
1

CSC 128
TOPIC 2: BASIC ELEMENTS OF

COMPUTER PROGRAM

By : MOHD SAIFULNIZAM ABU BAKAR

2

COURSE
OUTLINE

At the end of this chapter, you should be
able to:

• Understand the component of a program

• Identify the basic elements needed in
writing a program.

• Understand and apply basic element into a
program.

• Justify the process of writing the program
and error handling.

• Write a simple program.

3

INTRODUCTION

• In this chapter, we will discuss the basic elements required to write a
program using the C++ language.

• Here, we will learn to identify these basic elements. Besides that, we
will also learn how to write program code and discuss error handling.

• In the process of learning to write the basic elements in a program,
we will learn to write program code for reading input, displaying
output, and calculations using arithmetic operators.

• We will also discuss the steps to write the program using C++
language.

4

BASIC STEPS IN
WRITING C++

5

BASIC COMPONENTS OF A C++ PROGRAM

Comments [1]

Pre-Processor Directive [2]

Function [3]

Actual text used to write the instructions for a

computer program, and this text is then

translated into something meaningful the

computer can understand

6

BASIC COMPONENTS OF A C++ PROGRAM

• Example 2.2 shows a C++ program
that prompt the user to key in the
user’s weight and height.

• Then, the program will calculate the
BMI and display the result.

• General structure of a program
includes the elements used in the
programming steps.

7

COMPONENTS OF A C++ PROGRAM

• A comment [1] is text writing anywhere in between program statements that is
useful as an explanatory statement.

• The comment is not part of program source code, thus will be ignored by compiler
in compiling process but very useful for programmers.

• Explain the purpose, parts of the program and keep notes regarding changes to
the source code.

8

COMPONENTS OF A C++ PROGRAM

• Pre-Processor Directive [2] - Also known as header file in C++, thus, included at
the top of the program.

• Built-in features in C++ system, automatically can be loaded into a program.

• Example:

#include<iostream>

• With above statement, our program is allowed to access C++ I/O(input/output)
features. Thus, allow us to easily input and output to the screen using cin and cout
in program body.

This cause C++ preprocessor to take
code existing in a file of iostream in

C++ system and group with our source
code in the program. All the code soon

is compiled to produce a single
package of binary instruction.

9

COMPONENTS OF A C++ PROGRAM

• There are many other header files available that are used as required by the
program.

• Table 2.2 lists common header files that are frequently used in C++ programs.

10

COMPONENTS OF A C++ PROGRAM

• Every C++ program has a primary function [3] that MUST assigned the name main.

• The name main is mandatory and cannot be altered.

• The compiler searches for the function named main and compiles as the first function
executed!

• A complete function consist of name and body as follows:

• Line 4 indicates the name of function which usually come with int and empty parenthesis ().

• Line 5 till 9 indicate the body of the main function that MUST begin with { and end with }.

• For the first three chapters, students will learn writing the program using main function. The
extended roles of function will be explored in the chapter of user-defined function.

11

COMPONENTS OF A C++ PROGRAM

• A function contains a block of code that carries out specific task.

• The code itself is C++ statement, therefore a function consist a sequence of statements that
perform the work of the function.

• Usually in a function has input, output and operational statements.

• Every C++ statement ends with semicolon (;).

• Example you want to write a C++ program that display welcoming message of “WELCOME
TO UiTM PENANG!”.

PROGRAM OUTPUT

• Line 6 indicate output statement in the
function main.

• The statement outside the function will not
be executed by the computer.

12

BASIC ELEMENT OF C++ STATEMENTS

• In general, C++ statements consist of input statement using cin, display statement
using cout and operational statements using group of arithmetic operations.

• Anyhow, when you are writing a program that involves data manipulation,
concept of memory location become crucial to be understood before
implementation.

• Example: You want to write a program which user will key in two numbers and
your program will calculate the total.

15

Primarymemory

15
50

65 Memory location in a
computer

50

13

COMPONENTS OF A C++ PROGRAM

• C++ STATEMENT
• A function consists of a sequence of statements that perform the work

of the function.

• Every statement in C++ ends with a semicolon (;).

14

COMPONENTS OF A C++ PROGRAM

• BRACES
• Body of the main function which is enclosed in braces { }.

• Used to mark the beginning and end of blocks of code in any program.

• The open brace { is placed at the beginning of code after the main
function and the close brace } is used to show the closing of code.

• The code after the } will not be read/evaluated by the compiler.

15

BASIC ELEMENT OF C++ STATEMENTS

• In order to integrate the program with memory location in the computer,
proper declaration has to be made prior to the implementation of the
data.

• Usually the declaration is made in the function. The data itself can be
represent as a variable or a constant depends on the purpose of the
data.

U
se

r
en

te
re

d
an

y
va

lu
e

15
50

T
A

Q
I’U

D
D

IN
 H

A
M

Z
A

H

16

• Variable, constant , identifier

• Data types

• Variable declaration

VARIABLE & CONSTANT

• Arithmetic operation

• Assignment statement

• Math library

• Compound statement

OPERATIONAL STATEMENT

• Cin / cout statement

• Data types

• Predefined output formatting

INPUT AND OUTPUT
STATEMENT

WHAT WILL COVER

17

VARIABLES

• Variables can be defined as a memory

allocation that will hold data and the

values will keep on changing during

program execution.

• All the data needed to solve the problem

is known as input data, while the resulting

information produced is known as output

data.

18

CONSTANT
VARIABLES

• Data that has a fixed value are declared

as constant.

• For example, PI = 3.142, whereby the

value of PI is fixed for any situation.

• The data of a constant is unchangeable

throughout the program

19

IDENTIFIER

“An identifier is a name given (by programmer) to a

variable, constant variable, function’s name or label.”

NAMING IDENTIFIERS
the rules to write identifier name

43

21 An identifier may contain letter,
numbers and only the special
characters underscore (_)

An identifier may NOT contain blanks (
no space between identifiers).

An identifier must begin with a letter
or underscore (_) and may NOT begin
with a number

An identifier may NOT be a special/
reserved/keyword and symbols
($,&,%,*,@)

53 An identifier names in C++ can range
from 1 to 255 characters

Example:
To name variable / constant

1

• contain letter, numbers and only the special
characters underscore (_)

priceRate1
weight
pass2read
temperateSample3

1stPlace
Pass%Percentage

2

• An identifier must begin with a letter or
underscore (_) and may NOT begin with a
number

priceRate1
Weight
companyName
_myHouseID

3Sample
#VolumeSpehere

21

Example:
To name variable / constant

3

• An identifier may NOT contain blanks (no
space between identifiers).

discountRate
schoolID
monthsalary
temperateSample 3

Discount Rate
School IDNumber
month salary
Temperate Sample 3

4

• An identifier may NOT be a special/
reserved/keyword and symbols ($,&,%,*,@)

Item_Rate
dateofbirth
TEMPLATE
integer

Item-Rate
date@birth
template (reserved word)
void (reserved word)
int (reserved word)

22

List of Keywords and Special Symbols

Example:
To name variable / constant

25

DATA TYPES IN C++

• All the variables and constants have to be declared before they
are used in the program.

• To declare the variables, we have to identify the categories of
data and name each uniquely.

• It is because once we declare the variable, a memory space will
be provided.

• So, to allocate the size, we have to base it on the variable
categories.

• Data type represents the size and type of a variable

26

BASIC ELEMENT OF C++ STATEMENTS

27

DATA TYPES IN C++

• Once we declare a variable, a memory space will be provided.
The allocation size of memory has to be justified and it is based
on variable categories.

• Therefore, variable’s declaration must enclose appropriate data
type represents the size and type of a variable.

• Data type will explain the size of memory needed to hold the
value of a variable. We can split them to numeric data type,
character data type, string data type and logical value data type.

28

NUMERIC DATA TYPE

29

CHARACTER - DATA TYPES

• char is for variables with a single character or letter.
• char reserves a smaller size of storage for this data type.
• This char value will be enclosed in single quotation marks. The

following are some char variable values:
'A' 'b' 'G' '*' '$' '8' '12'

• Sometimes, char can also be used for holding more than
individual letters.

• The statement shows that the variable gender will hold seven
letters. The following is an example for this kind of char data
type:

'm', 'a', 'l', 'e'

30

STRING - DATA TYPES

• A string, also known as a sequence of characters, is used for
variables such as name, address, object code, telephone numbers,
car plate numbers and other variables that are made up of a
combination of numbers, words and symbols.

• String variables are enclosed in double quotation marks.
• This string data type has a large storage size to hold the

combination of values.
• The following are some examples showing the values of the

string data type:
• "Eric Soh“ "AGP103“ "AP100“ "012-123125"

31

LOGICAL - DATA TYPES

• A variable that has a value of true or false is known as a logical
value data type.

• The data type for a logical value is bool.
• The bool data type is usually used in a looping structure.
• Next slide shows example of every data type and their

explanation

32

DESCRIPTION OF DATA TYPES

33

EXAMPLE

• Define a correct data type for the following variables

1. Number of students - int (integer-whole number)
2. Customer discount rate – double / float (decimal)
3. Book name - string (word)
4. Book category code – char (character)

34

VARIABLE AND CONSTANT DECLARATION

• The process of clarifying the variable name and data type of a
variable is known as variable declaration.

• The declaration is a C++ statement, so it should end with a
semicolon (;).

• In the declaration statement, we should write the data type,
followed by the variable’s name.

• The general way to write a variable declaration is as follows:
dataType variable_name;

35

VARIABLE DECLARATION EXAMPLE

• int age;

• int studentNumber;

• double totalPrice;

• float temperature;

NUMERIC

• char itemCode;

• char code [6];

• bool status;

• string name= “ ”;

NON NUMERIC

Data Type

Variable Name

36

VARIABLE DECLARATION

37

VARIABLE DECLARATION FOR
SAME DATA TYPES

int age;

int studentNumber;

Int adult;

NUMERIC

int age, studentNumber , adult ;

double totalPrice , temperature;

Separated by coma

Separated by coma

double totalPrice;

float temperature;

38

VARIABLE DECLARATION & ASSIGN

• int age;

• int studentNumber;

DECLARE ONLY

age 0

studentNumber 0

age 10

studentNumber 98

• int age = 10;

• int studentNumber=98;

DECLARE AND ASSIGN VALUE

COMPUTER MEMORY

39

CONSTANT DECLARATION

• Constant variables must also be declared before they can be
used.

• A constant variable is a variable that has a value that never
changes.

• To declare the constant variable, we will use the literal value,
which means that we are using the constant value. A literal value
is any fixed or constant value used in a program.

• The syntax of a declaration statement for a constant variable is:
const data type variable name = literal or actual

value;

40

CONSTANT DECLARATION

• Examples:

const double PI=3.142;

const double GRAVITY=9.8;

const char sizeCode= ‘M’;

const string companyName= “ABC Interprise”;

const data type variable name = literal or actual value;

41

ARITHMETIC EXPRESSIONS

42

ARITHMETIC EXPRESSIONS

• Arithmetic expressions are the mathematical formula used to solve the
problem statement.

• Usually, in solving a problem, we will do some calculations or evaluations
to find the solution.

• In C++ programming, there are a few operators defined in the arithmetic
expressions.

• The operators in C++ expressions are similar to normal mathematical
expressions.

• The difference between the two expressions is the symbols used to
represent them.

• Operators represent the symbols for instructions or commands that have
to be performed.

43

ARITHMETIC EXPRESSIONS

• There are five basic operators used in C++ expressions and there are:

Operation MATH operator C++ operator Example

addition + + c=a+b;

subtraction - - c=a-b;

multiplication x * c=a*b;

division ÷ / c=a/b;

modulus

(return remainder)

mod % c=a%b;

44

ARITHMETIC EXPRESSIONS

• Example:

45

ARITHMETIC EXPRESSIONS

• We have to convert the mathematical formula or algebraic expression to
the arithmetic expression used in programming.

• Table 2.6 provides samples of algebraic expressions converted to
arithmetic expressions.

46

ARITHMETIC EXPRESSIONS

We have to convert the
mathematical formula or
algebraic expression to the
arithmetic expression used
in programming.

47

ARITHMETIC EXPRESSIONS

• In situations where mixed
numeric types appear in an
expression, the computer
will replace all variables with
copies of the highest
precision type.

• Here, the solution will be
solve based on a hierarchy
of operations and there is
also a need for a hierarchy
of types.

The hierarchy starts from integer, to float,
and then to double.

48

ARITHMETIC EXPRESSIONS

49

MIXED TYPE EXPRESSION

• A mixed-type expression means that different data type values are being
calculated.

• For example, to solve (3/6.0), the computer will promote the lower
operand in the hierarchy to the higher type before the calculation is
carried out.

• The expression (3/6.0) is converted to (3.0/6.0) before the division is
performed. So the answer for the division is 0.5.

• Sometimes, type changes can be made explicit by placing the value to be
changed in parentheses and placing the name of the new type before it.
This process is called type casting or type conversion.

50

MIXED TYPE EXPRESSION

• Given:

int X; double Y;

Y = 3.4; X = 12;

Y = int (Y) + X ;

So, answer is Y = 15

Y = X + Y ;

So, answer is Y = 15.4

51

ASSIGNMENT STATEMENT

• An assignment operator (=) is an operator that shows where the
value is assigned to.

• If given x=5, it means that value 5 is stored by variable x.
• Every variable in a program is given a value explicitly before any

attempt is made to use it.
• It is also very important that the value assigned is of the correct

type.

variable = expression; // (eg: int num=5;)

variable = constant; // (eg: const double PI=3.142;)

num1 = 45; //the value of num1 is 45

num2 = num1; //the value of num2 takes the value of num1 = 45

52

ASSIGNMENT STATEMENT

• Besides simple assignment (=), we also have a situation of (==) whereby
this assignment is used to do comparison between the right and left side
of assignments (==). For example:

if (ans == ‘y’)

{

True statements;

}

else

{

False statements;

}

53

ASSIGNMENT STATEMENT

• The assignment operator (=) also enables the storage of a value in
memory.

• The value is stored at a location in memory that is accessed by the
variable on the left-hand side of the assignment operator.

Example 1:

x = x+1;

//means add one to x and then assign the resulting value back to x.

Example 2:

x =3 //means value of 3 is assigned to x variable

x ==3 //means x is equal to 3

54

C++ COMPOUND ASSIGNMENTS

55

PRECEDENCE AND ASSOCIATIVITY

• In C++, we routinely have a few operators in a mixed expression.
• Which one should be evaluated first? Here, we have to follow the

precedence rules to perform the mixed expression as shown in table 2.10.
• We have to draw the parentheses once we start to evaluate the

expression.
• Precedence shows the sequence of arrangement or order of operators

that should be evaluated first in mixed expression.
• Associativity is the process that specifies the order to perform which

calculation first if two or more expressions have the same priority.

56

PRECEDENCE AND ASSOCIATIVITY

B Bracket

O Order L—R

D Division

M Multiplication

A Addition

S Substraction

57

INCREMENT AND DECREMENT OPERATOR

• Increment is the process of adding value to a variable.

• Decrement is the process of subtracting the value in a statement.

• Prefix is a process of performing the evaluation immediately.
Example: ++a or --a means increase/decrease (evaluate) before assign the
value.

• Postfix is a process of performing the expression after the evaluation.
Example: a++ or a-- means increase/decrease (evaluate) after assign the
value.

58

INCREMENT AND DECREMENT OPERATOR

59

INCREMENT AND DECREMENT OPERATOR

60

INCREMENT AND DECREMENT OPERATOR

61

INCREMENT AND DECREMENT OPERATOR

62

INCREMENT AND DECREMENT OPERATOR

63

UNARY AND BINARY OPERATORS

• Unary operators are operators that operate on a single operand while
binary operators are operators that operate on two operands.

• some examples of unary and binary operators.

64

MATHEMATICAL LIBRARY FUNCTIONS

• Besides the five basic operators in arithmetic expression, we have
other mathematical operators that have been defined in the
mathematical library function.

• For example, algebraic expression x2, whereby it means x power
of 2. We are unable to write the expression in C++ programming.
To use those operators, we have to refer to the maths library
function.

• While writing the program, we need to include the math.h header
file that will allow the computer to refer to the library.

65

MATHEMATICAL LIBRARY FUNCTIONS

66

MATHEMATICAL LIBRARY FUNCTIONS

pow (x,y)

math function

number1 5

power 25

COMPUTER MEMORY

67

MATHEMATICAL LIBRARY FUNCTIONS

sqrt (x)

math function

number1 25

root 5

COMPUTER MEMORY

68

MATHEMATICAL LIBRARY FUNCTIONS

length_a 3

length_b 4

COMPUTER MEMORY

hypot (a,b)

math function

69

INPUT AND OUTPUT STATEMENTS

• After the declaration steps, we will continue with reading data
from the user, which is also known as the input process.

• In the input process, the value that we use is known as the input
variable.

• The input process can be done in two ways.

• Firstly, by assigning the value to the variable.

• The second way is by reading the value from the user.

• Standard input stream, cin, is used to represent the input
statement.

70

INPUT STATEMENTS

• The cin statement is used to get input from the user using the
keyboard.

• The stream extraction operator, >>, is capable of handling all of
the basic data types in a way that is transparent to the
programmer.

• To perform the read process in a C++ statement, we will use the
syntax below:

cin>> input variable name;

71

INPUT STATEMENTS

• The cin statement is used to get input from the user using the
keyboard.

• The stream extraction operator, >>, is capable of handling all of
the basic data types in a way that is transparent to the
programmer.

• To perform the read process in a C++ statement, we will use the
syntax below:

cin>> input variable name; Example 1:
i. cin>>num1;
ii. cin>>code;

72

INPUT STATEMENTS

• If we want to read more than one variable in one statement, we
can apply the step below:

cin>>num1>>num2;

• Method 1 : cin one by one
cout<<“Please enter your height”;

cin>>height;

cout<<“Please enter your weight”;

cin>>weight;

• Method 2 : cin all in one
cout<<“Please enter your height and weight”;

cin>>height>>weight;

73

INPUT STATEMENTS

• If we want to read more than one variable in one statement, we
can apply the step below:

cin>>num1>>num2;

Method 1 : cin one by one

cout<<“Please enter your height”;

cin>>height;

cout<<“Please enter your weight”;

cin>>weight;

Method 2 : cin all in one

cout<<“Please enter your height and
weight”;

cin>>height>>weight;

74

INPUT STATEMENTS

cin>> int/double/float

int age; double cgpa;

cout<<“Please enter your age”;

cin>>age;

cout<<“Please enter your cgpa”;

cin>>cgpa;

cin>>single char

char raceCode;

cout<<“Please enter your race“;

cin>>raceCode;

75

INPUT STATEMENTS –CHAR[] / STRING

• Input statements for char[] and string are different compared to
numeric and single character variables.

• The reading process uses the getline keyword which informs the
compiler to accept a string value.

• The reading process for char[] and string data types can be
performed using the general syntax as shown in the following
example:

//for char with size

cin.getline(variable, length);

//for string data type

getline(cin, variable);

76

INPUT STATEMENTS –CHAR [] / STRING

77

OUTPUT STATEMENTS

• For display instructions and output in C++, we will use the cout
statement.

• For display instructions, we will write the instruction in double
quote (“ ”) after the cout<< and end the statement with semicolon
(;).

• The syntax of the display instructions is shown below:
cout<< “instruction statements”;

78

OUTPUT STATEMENTS

• For display output in C++, we will used the cout statement and
place the variable name, and end the statement with a semicolon
(;). The syntax of the display output is as follows:

cout<< variablename1<<variablename2;

• If we want to combine an instruction and display output in one
statement, it can be written like this:

cout<<“instruction statements”<< variablename;

•

79

OUTPUT STATEMENTS

80

FORMATTING OUTPUT STATEMENTS

• There are two ways to format the display.
• We can use an escape sequence and a predefine function to

format the output in cout statement.
• An example of formatting an output statement is to format the

output in two decimal points.
• Besides that, we can also arrange the output to look like a table

format, etc.

81

FORMATTING OUTPUT STATEMENTS

• We can perform simple formatting in our cout statements. The
table below shows the list of escape sequence formatting
available in C++. To use the escape sequence, we have to write
the formatting in between the double quotation marks in the cout
statement.

• The general syntax to apply the escape sequence is as follows:

cout << "instruction statements (escape sequence)";

82

FORMATTING OUTPUT STATEMENTS

83

FORMATTING OUTPUT STATEMENTS

84

FORMATTING OUTPUT STATEMENTS

85

FORMATTING OUTPUT STATEMENTS

86

FORMATTING OUTPUT STATEMENTS

• There are some predefined functions that can used to format the
output by including the standard library iomanip header file.

• Table below shows some of the predefined functions that can be
used for formatting.

87

FORMATTING OUTPUT STATEMENTS

• setw(n) is a predefined function that will format statements in a
width n.

• In other words, setw(n) sets the width. A general way to use
setw(n) is as follows:

cout <<setw(n)<<"instruction statements";

88

FORMATTING OUTPUT STATEMENTS

• The program in Example
2.20 shows formatting the
output using setw and
setfill. setfill is used to fill
the empty space in the
width provided with the
character assigned.

• To prove the setw width is
correct, we can combine it
with setfill as shown in
Example 2.20.

89

FORMATTING OUTPUT STATEMENTS

90

ERRORS IN C++ PROGRAMMING

• After writing a complete program, the next step is to compile and
test.

• Compiling is a process of checking for errors in the program.
• There are three types of errors defined in C++ programming.
• After detecting errors, we have to debug [The process of

correcting the errors] them.

01

0302

91

LOGICAL ERRORS RUNTIME ERRORS

SYNTAX ERRORS

can also be detected once we preview

the result. This can lead to the result

not being displayed or a program that

will not stop running.

when we get wrong or unexpected

results. This type of error may

happen if we use the wrong formula

or the wrong variable in the formula.

when we break the rules of writing a C++

program. This error will be identified after

compiling the program.

ERRORS IN C++ PROGRAMMING

92

ERRORS IN C++ PROGRAMMING

93

CONCLUSION

• The steps to write a C++ program are:
1. Start with common line and header file,
2. Continue with the main function.
3. Write declaration statements.
4. Write the executable statements that include the cin, cout and the

process statements in between the open and close braces that
show the limitation of the C++ program.

• Input is the process of reading data from the user into computer.
• Output is the process of producing the result from the computer.

94

CONCLUSION

• Variable refers to input and output data in the problem statement.
• Variable is also defined as the allocation of memory whereby the

value will keep on changing during the program’s execution.
• Each variable has to be declared.
• Statements in C++ should end with a semicolon (;).
• Data type refers to the category that represents the size in a

memory.
• The two main categories of variables are numeric/number and

word/letter or symbol.

95

CONCLUSION

• There are five basic operators used in the arithmetic expression,
which are (+), (-), (/) ,(*) and (%).

• Precedence and associativity are used while evaluating the
arithmetic expression to solve problems based on the order and
priority.

• For formatting the output display, we can use the escape
sequence methods or used the predefined functions in iomanip
header file methods.

• There are three types of errors, which are syntax errors, run time
errors and logical errors.

	Default Section
	Slide 1: Csc 128
	Slide 2: Course outline
	Slide 3: INTRODUCTION

	Basic Components of C++ Program
	Slide 4: Basic Steps in Writing C++
	Slide 5: Basic Components of a C++ program
	Slide 6: Basic Components of a C++ program
	Slide 7: Components of a C++ program
	Slide 8: Components of a C++ program
	Slide 9: Components of a C++ program
	Slide 10: Components of a C++ program
	Slide 11: Components of a C++ program
	Slide 12: Basic element of C++ statements
	Slide 13: Components of a C++ program
	Slide 14: Components of a C++ program
	Slide 15: Basic element of C++ statements
	Slide 16: WHAT WILL COVER

	Variables and Constant
	Slide 17: variables
	Slide 18: Constant variables
	Slide 19: IDENTIFIER
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

	Data Types
	Slide 25: Data types IN C++
	Slide 26: Basic element of C++ statements
	Slide 27: Data types IN C++
	Slide 28: Numeric Data Type
	Slide 29: Character - Data types
	Slide 30: string - Data types
	Slide 31: logical - Data types
	Slide 32: Description of Data Types
	Slide 33: ExamplE

	Varibles and Constant Declaration
	Slide 34: Variable and Constant Declaration
	Slide 35: Variable Declaration example
	Slide 36: Variable Declaration
	Slide 37: Variable Declaration for same data types
	Slide 38: Variable Declaration & assign
	Slide 39: Constant Declaration
	Slide 40: Constant Declaration

	Arithmetic Expressions
	Slide 41: Arithmetic Expressions
	Slide 42: Arithmetic Expressions
	Slide 43: Arithmetic Expressions
	Slide 44: Arithmetic Expressions
	Slide 45: Arithmetic Expressions
	Slide 46: Arithmetic Expressions
	Slide 47: Arithmetic Expressions
	Slide 48: Arithmetic Expressions
	Slide 49: Mixed Type Expression
	Slide 50: Mixed Type Expression
	Slide 51: Assignment Statement
	Slide 52: Assignment Statement
	Slide 53: Assignment Statement
	Slide 54: C++ Compound Assignments
	Slide 55: Precedence and Associativity
	Slide 56: Precedence and Associativity
	Slide 57: Increment and Decrement Operator
	Slide 58: Increment and Decrement Operator
	Slide 59: Increment and Decrement Operator
	Slide 60: Increment and Decrement Operator
	Slide 61: Increment and Decrement Operator
	Slide 62: Increment and Decrement Operator
	Slide 63: Unary and Binary Operators

	Mathematical Library Functions
	Slide 64: Mathematical Library Functions
	Slide 65: Mathematical Library Functions
	Slide 66: Mathematical Library Functions
	Slide 67: Mathematical Library Functions
	Slide 68: Mathematical Library Functions

	Input Statements
	Slide 69: Input and Output Statements
	Slide 70: Input Statements
	Slide 71: Input Statements
	Slide 72: Input Statements
	Slide 73: Input Statements
	Slide 74: Input Statements
	Slide 75: Input Statements – char[] / string
	Slide 76: Input Statements – char [] / string

	Output Statements
	Slide 77: output Statements
	Slide 78: output Statements
	Slide 79: output Statements

	Formatting Output Statements
	Slide 80: Formatting output Statements
	Slide 81: Formatting output Statements
	Slide 82: Formatting output Statements
	Slide 83: Formatting output Statements
	Slide 84: Formatting output Statements
	Slide 85: Formatting output Statements
	Slide 86: Formatting output Statements
	Slide 87: Formatting output Statements
	Slide 88: Formatting output Statements
	Slide 89: Formatting output Statements
	Slide 90: Errors in C++ Programming
	Slide 91: Errors in C++ Programming
	Slide 92: Errors in C++ Programming

	Conclusion
	Slide 93: Conclusion
	Slide 94: Conclusion
	Slide 95: Conclusion

